PSD Equation:
From: | To: |
Power Spectral Density (PSD) describes how the power of a signal or time series is distributed over frequency. It is a fundamental concept in signal processing and spectral analysis, providing insights into the frequency content of signals.
The calculator uses the PSD equation:
Where:
Explanation: The equation calculates the power distribution across frequencies, providing a measure of signal strength at each frequency component.
Details: PSD analysis is crucial for understanding signal characteristics, noise analysis, vibration studies, and communication system design across various engineering and scientific disciplines.
Tips: Enter frequency in Hz, time period in seconds, and signal amplitude. All values must be valid positive numbers for accurate calculation.
Q1: What is the difference between PSD and power spectrum?
A: PSD is normalized by frequency bandwidth, providing power per unit frequency, while power spectrum shows total power at each frequency.
Q2: When should I use PSD analysis?
A: PSD is particularly useful for stationary random processes, vibration analysis, noise characterization, and communication signal analysis.
Q3: What are the units of PSD?
A: PSD units are typically watts per hertz (W/Hz) for power signals, or volts squared per hertz (V²/Hz) for voltage signals.
Q4: Are there limitations to PSD analysis?
A: PSD assumes stationarity of the signal and may not accurately represent transient or non-stationary signals without proper windowing techniques.
Q5: How does windowing affect PSD calculation?
A: Windowing reduces spectral leakage but introduces trade-offs between frequency resolution and side lobe suppression in the calculated PSD.