Look Angle Equation:
From: | To: |
The Look Angle Equation calculates the elevation angle for satellite observation from Earth's surface. It determines the angle between the satellite and the observer's local horizontal plane, which is crucial for satellite tracking and communication.
The calculator uses the Look Angle equation:
Where:
Explanation: The equation calculates the elevation angle based on the geometric relationship between the satellite's altitude, Earth's radius, and the distance to the satellite.
Details: Accurate look angle calculation is essential for satellite tracking, communication systems, ground station antenna alignment, and satellite observation planning.
Tips: Enter satellite radius and Earth radius in kilometers, and the distance to the satellite in kilometers. All values must be positive numbers.
Q1: What is a typical elevation angle range for satellite communication?
A: Most satellite communication systems require elevation angles between 5° and 90° for optimal signal quality.
Q2: Why is Earth's radius needed in the calculation?
A: Earth's radius provides the reference point from the center of the Earth, which is essential for calculating the geometric relationship between the observer and the satellite.
Q3: How does distance affect the elevation angle?
A: As distance increases, the elevation angle generally decreases, assuming the satellite's altitude remains constant.
Q4: Are there limitations to this equation?
A: This is a simplified geometric model that assumes spherical Earth and doesn't account for atmospheric refraction or other complex factors.
Q5: What units should be used for the inputs?
A: All distance measurements should be in kilometers for consistent results. The output elevation angle is in degrees.